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Abstract—In the Internet of Things (IoT) era, data movement
between processing units and memory is a critical factor in
the overall system performance. Processing-in-Memory (PIM)
is a promising solution to address this bandwidth bottleneck
by performing a portion of computation inside the memory.
Many prior studies have enabled various PIM operations on non-
volatile memory (NVM) by modifying sense amplifiers (SA). They
exploit a single sense amplifier to handle multiple bitlines with a
multiplexer (MUX) since a single SA circuit takes much larger
area than an NVM 1-bit cell. This limits potential parallelism
that the PIM techniques can ideally achieve. In this paper, we
propose MAPIM, mat parallelism for high-performance processing
in non-volatile memory architecture. Our design carries out
multiple bit-lines (BLs) requests under a MUX in parallel with
two novel design components, multi-column/row latch (MCRL)
and shared SA routing (SSR). The MCRL allows the address
decoder to activate multiple addresses in both column and row
directions by buffering the consecutively-requested addresses.
The activated bits are simultaneously sensed by the multiple SAs
across a MUX based on the SSR technique. The experimental
results show that MAPIM is up to 339× faster and 221× more
energy efficient than a GPGPU. As compared to the state-of-the-
art PIM designs, our design is 16× faster and 1.8× more energy
efficient with insignificant area overhead.

I. INTRODUCTION

With the advent of Internet of Things (IoT), billions of
devices and objects are continuedly gathering and transmit-
ting data [1]. Data movement between processing units and
memory needs to be increased to enable massive data analysis
needs. However, the conventional memory systems based on
off-chip channel networks, e.g. DDR3/4 and GDDR, cannot
support such a large amount of data movements due to pin
count limitation [2], [3]. Processing-in-Memory (PIM) [4]–
[9] places processing units close to the memory. This enables
computation with high-bandwidth accesses to where the data
resides.

Emerging NVM is a promising candidate to enable the PIM
techniques due to its high density and low static power [10].
Recent work modifies sense amplifiers (SA) to enable comput-
ing [4], [7]–[9], [11], [12]. Since the NVM uses the current-
mode SA, the SA size of the NVM is much larger than that
of the DRAM which senses a voltage difference between the
bitlines [4], [13]. As a result, an SA of the NVM takes charge
of multiple BLs, and multiple bits under a single SA cannot
operate in parallel. In the conventional memory, this restriction
has not been a critical since the off-chip bandwidth is limited.
The work in [14] showed that, since the commodity memory
hierarchies were designed targeting the processor sector size,
increasing atomic size leads to performance degradation [15].

In a DDR3 channel, for example, the 64-bit I/O interface op-
erates at 800MHz, providing 12.8GB/s of memory bandwidth.
To support this channel bandwidth, with a memory subsystem
that has 8 chips-per-rank, 8 banks-per-chip, 32 subarrays-
per-bank and 32 mats-per-subarray, a bank in the memory,
which has a 200MHz internal frequency with an 8-bit prefetch,
outputs 8 bits at each channel clock. This estimate implies
that a mat atom size is less than 1-bit per a clock frequency,
meaning a mat-level parallelism does not effect on system
performance due to narrow off-chip bandwidth. In contrast,
PIM design needs to execute multiple BLs in parallel as much
as possible since the channel bandwidth is not the bottleneck.
However, the existing NVM-based PIM techniques have to
execute each bit connected to a single MUX sequentially in
the mat array due to limitations to the size of SA, resulting in
much lower performance.

In this paper, we propose a high-performance PIM archi-
tecture which enables the simultaneous execution of the PIM
operations for multiple BLs. Baseline NVM architecture is
based on the work in [13], [16] whose m×n mat structure is
shown in Fig. 1(a). A mat is an atomic access unit for a single
memory operation [17]. It has its private SAs and decoders.
The WLs and BLs are paired with the local wordline (LWL)
decoder and SA to control which bits are selected from the
array. Compared to DRAM, the most commercialized memory
product, a big difference in NVM design is an SA structure.
While in DRAM SA, each BL is connected to an individual
SA circuit, NVM array structure places a multiplexer (MUX)
in front of the SA, which are used to select a BL connecting to
a single I/O line from the multiple BLs, denoted as k lines in
Fig. 1(a). Therefore, the local BLs tied in a MUX (i.e. 8BLs or
16BLs) cannot be accessed in parallel but in bit by bit mode.

Our design, called MAPIM (Mat Parallelism for High-
Performance Processing in Non-volatile Memory Architec-
ture), is built with two novel components: multi-column/row
latch (MCRL) and shared SA routing (SSR). Fig. 1(b) shows
the sensing scheme of the proposed MAPIM. In baseline NVM
structure, the number of SAs in a mat ranges from 32 to 64,
which is similar to the number of bits in a word. MAPIM shares
the SAs in a mat and thus enables word-size of multiple bits to
be sensed in parallel. The MCRL activates multiple WLs/BLs
at the same time, so that the PIM operations are requested in a
row/column-parallel way. The SSR allows the requested multi-
BLs to use multiple SAs across a MUX, thus fully utilizing the
SAs of the mat for the parallel execution in the PIM operations.

Our contribution can be summarized as follows:
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Fig. 1. Conventional NVM and proposed MAPIM sensing structures

• We show that the SA size is a significant constraint to
achieve further performance of PIM operations.

• Our MAPIM design parallelizes multiple-BLs execution
within a mat. We also show the detailed circuit-level
design with the robustness and sensitivity analysis.

• The proposed MCRL design enables efficient multi-
row/column activations. Unlike the state-of-the-art design,
it holds the activation signals with a wide margin of μs
order, allowing to select any target operands for the
parallel PIM computations.

• With the SSR technology, the proposed MAPIM fully
utilizes the limited number of SAs located in a mat, when
the PIM operations are performed for a large number of
rows and columns.

Our evaluation shows that the proposed MAPIM achieves
up to 339× speedup and 221× energy saving compared to
a GPGPU architecture, and 16× speedup and 1.8× energy
saving compared to the state-of-the-art PIM designs.

II. RELATED WORK

Recent spike in research on PIM architecture is due to
the development of 3D-stacking technologies [2]. The works
in [3], [18] integrate extra computing units using 3D tech-
nologies close to the memory, facilitating the computation
near the data. However, this approach is still inefficient due
to implementing a costly logic stack into the memory stack,
including through-silicon-via (TSV), micro-bumps, etc. An
alternative way to address the issue of 3-D technology is
to place the computation units directly inside the memory.
However, in commercialized memory, e.g., SRAM, DRAM, to
minimize the overhead caused by the computation units is a
major concern since the PIM function is placed in the matured
memory hierarchy potentially causing larger overhead. NVM
is a promising candidate for the PIM design due to its
analog characteristic based on the current-drive mode and less
overhead. [4], [11]. Several works modified the SA to enable
the PIM function on the existing architecture [4], [6]–[9], [11],
[12]. However, the current-mode SA of NVM, which takes
a larger area compared to the voltage-mode SA of DRAM,
hinders the local parallelism since the multiple BLs assigned to

a multiplexer should operate in sequence. Our work addresses
this lack of parallelism by proposing a novel design utilizing
address latching and SA sharing techniques.

Parallelism at rank [19], bank [20], subarray [21] has been
actively studied, but mat-level parallelism has not been deeply
explored since it is not very effective in conventional off-
chip memory due to the boundness of channel bandwidth.
However, PIM design can fully utilize the mat parallelism
to the performance improvement. In this paper, we enable a
mat-level parallelism with insignificant modification to state-
of-the-art NVM architecture.

III. PROPOSED MAPIM DESIGN

A. Overview
Fig. 2 shows the mat structure of MAPIM. Mat is the

building block of bank, a fully-functional memory unit [22].
It consists of cell arrays, SA, and local decoder. The figure
does not show upper bank level design which remains the
same as before [13]. We introduce two new structures to
enable mat-level parallelism: multi-column/row latch (MCRL)
and shared SA routing (SSR). A local bitline (LBL) decoder
is placed under a local word-line (LBL) decoder to ease
layout. The decoded signals from the LWL decoder and
LBL decoder are transferred to the WLs and local Y-switch
(LYSW), respectively, to activate the corresponding WLs and
BLs as shown in Fig. 2. MCRL, denoted as (A) in Fig. 2, refers
to both multi-column latch and multi-row latch. It serves as the
buffer that keeps the sequentially activated WLs and signals to
the LYSWs from the decoder and enables them simultaneously.
SSR, marked as (C), enables multi-bit execution in parallel by
sharing the limited number of SAs in a mat to the requested
BLs. NVM cell is sensed by the resistance difference between
a logical 0 and 1, so it is less sensitive to the BL capacitance
as compared to the conventional DRAM. This allows NVM
SAs to be delocalized within a mat and be flexible to associate
with segmented BLs.

B. Multi-Column/Row Latch (MCRL)
We next discuss each of our design’s components in de-

tail. Fig. 2(A) shows a circuit unit of the proposed MCRL



Fig. 2. Mat structure of proposed MAPIM design

corresponding to a single WL as a representative. It consists
of four components: 1 a discharge transistor, 2 a transfer
gate, 3 a driving gate, and 4 a feedback inverter. First, the
discharge transistor resets all WLs to ground. In the second
step, the transfer gate passes the decoded signals from the local
decoders to the latch. The transfer gate is made up of two
transistors, an n-channel MOSFET (NMOS) and a p-channel
MOSFET (PMOS), connected in parallel, since they need to
transfer both 0 and 1 without loss of strength. Following two
inverters, a driving gate and a feedback inverter, drive the
decoded signal to ‘L Out’ in a cell array. When the input
signal from the decoder is low, a node ‘L’ potential does not
change since the initial status of the node is low. When the
decoded signal is high, i.e., a corresponding WL is activated,
the node ‘L’ potential flips to one and the inverted potential
turns the transfer gate off, so the input signal is latched in
the MCRL. The feedback inverter is used to prevent the node
‘L’ from floating when the transfer gate is off. It needs to be
weaker compared to the transfer gate for faster switching. In
our experiments, the drivability of the feedback gate is set to
1/3 of transfer gate for easy signal transference. The circuit
evaluation of our MCRL design is shown in Sec.IV-B.

C. Shared SA Routing (SSR)

As mentioned in Sec.III-A, NVM is less sensitive to BL
length compared to DRAM. NVM has resistance-based oper-
ation, so its SA works by detecting current change across the
NVM cells. The work in [22] showed that the current-mode
SA has a sub-linear dependency on BL length, so cells can
be sensed out of the cell-array. Moreover, NVM read is not
destructive while DRAM’s is. Thus resistances such as MUX
can be placed in front of SA. This gives us more room to
increase parallelism with our SSR design. Fig. 2(C) shows the
proposed SSR design. Compared to the conventional NVM SA
design in which each SA corresponds to their own LYSW as
shown in Fig. 1(a), the LYSWs of our design share the SAs
within a mat as shown in Fig. 2(C). 16 BLs in an LYSW,

described in Fig. 2(B), are allocated in SA[0]∼SA[15]. All
other LYSWs in a mat, i.e., LYSW[0]∼LYSW[15], share the
SAs in the same sequence. Consequently, 16BL-sets of all
LYSWs in a mat have the same SA allocation as shown in
Fig. 2(C). In this paper, we have 16 BLs in an LYSW and
16 LYSW in a mat for illustration purposes. However, the
actual array size can be flexible with a typical range of 8 BLs
and 8 LYSWs to 32 BLs and 32 LYSWs as a function of
the memory granularity. The LBL decoder has two steps. Pre-
decoding selects an LYSW in a mat. A subsequent decoding
step selects a BL in that LYSW. At a given LYSW selected
in the pre-decoding, proposed MCRL holds the consecutively
activated BL addresses. Then the multiple signals buffered in
the MCRL enable multiple-columns to activate by turning on
NMOS transistors in an LYSW as shown in Fig.2(B). The
selected BLs are read out simultaneously. The accessed data
is assigned to the corresponding SAs by our shared-routing
method.

The latency of SSR is shown in Fig. 3, where tRCD is the
row activation time, tRP is the precharge time, and tCL is the
column read time. A read cycle (tRC) is represented as tRC
= tRCD + tCL + tRP. Data restoration time is zero since the
NVM is inherently non-destructive in sensing operation. [23].
We define a new timing parameter, tCIT , the time interval
between sending two consecutive column addresses. The top
of Fig. 3 presents the timing graph of the baseline in which
the local BLs are read in sequential mode. The row address
activates a WL and the first column address (Col 1) activates
a BL. Then the selected bit is sent to an assigned SA. As
our sensing circuit can perform a 1-bit addition, which will
be explained in Sec. III-D, a carry-out of 1-bit addition is
written back to the memory cell in the next bit and a sum is
sent to the cache. Once the Col 1 is activated, 1-bit operation
and precharge have completed, during tCL and tRP, then the
Col 2 is activated for the next bit operation.
MAPIM temporarily holds on multiple columns requests, e.g.

Col 1 and Col 2 as shown on the bottom of Fig. 3, in the



Fig. 3. Timing graph of two requests from two different BLs

latch and they are activated simultaneously with the MCRL
activation request. While the conventional operation uses two
tCL and one tRP for the two-bit calculation as shown in
Fig. 3, MAPIM uses one tCL for the same operation, which can
accelerate the requested operation by saving tCL. Note that
tCIT is negligible compared to tCL and tRP since multiple
column latches occur inside the decoder logic whereas tCL
and tRP are between the on-chip memory controller and the
off-chip memory. In N-bit operation, conventional design takes
N×tCL + (N-1)×tRP, while MAPIM takes tCL + (N-1)×tCIT .
Since MAPIM consumes fixed amount of time, tCL, as the
number of bits increases, overall speedup of MAPIM increases
due to saving column read and precharge latency.

D. Sensing Circuits for Arithmetic Operation

Fig. 2(D) is the sensing circuit for the arithmetic operation
in MAPIM. Our design modifies a conventional SA [24], which
determines the logical 0 and 1 by reading the cell resistance,
to perform 1-bit addition. We exploit 1-bit addition using our
sensing circuit since the addition is a building block of the
order of operations for our application test. The current mirror
in Fig. 2(D) copies the IBL to I1 and I2 and delivers them
to Carry-out (Cout ) and Sum nodes, respectively. IBL is the
read current in a BL, accumulated from the selected three bits
when three rows are activated in a cell array. Fig. 4 shows how
the circuit carries out 1-bit addition. Since each memristor has
two states, 0 and 1, there are four equivalent combinations of
IBL: I000, I100, I110 and I111 in the case of three-bit calculation.
There are three voltage nodes: V1, V2, and V3, as shown in
Fig. 2(D), whose potential determines the final outputs of
the Sum and Cout . The voltage of each node is determined
as a function of the current, Cout and Sum nodes exhibit the
corresponding values in each case of IBL and finally result
in the execution of 1-bit addition. Our sensing circuit utilizes
the thyristor latch-up effect [25] to execute the I111 region to
create the desired Cout=1 and Sum=1.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluated the performance and energy consumption of
the proposed design as compared to the work in [4], [24].
We used VTEAM memristor model [26] for our cell design

Fig. 4. Sensing circuit for 1-bit addition

with Ron and Ro f f of 10KΩ and 10MΩ respectively. Circuit-
level simulations are performed with Cadence Virtuoso and
Spectre based on a 45nm CMOS process. We compared the
performance and energy of MAPIM with AMD Radeon R9
390 GPU with 8GB memory. We modified Multi2sim [27], a
cycle-accurate CPU-GPU simulator, to evaluate the impact of
different PIM designs when the parallelized instructions are
performed with the PIM operations. We experimented with
four applications, Sobel, Robert, Fast Fourier transform (FFT)
and DwHaar1D.

B. MCRL Robustness

Fig. 5 presents the result of circuit evaluation of MCRL
in MAPIM and comparison to the state-of-the-art design in [4].
For the latch design in [4], we observe that i) low signal
drivability leads to large area overhead to boost the signal
across gates, and ii) the node, which holds the signal (denoted
as ‘L’ at Fig. 2(A)), is likely to be floating. These issues may
make the latch unable to hold the signal long enough for the
multiple activations due to the leakage-current dissipation. As
shown in Fig. 5, the signal of the ‘L’ node in Pinatubo [4]
is so weak as that only 48% of the total signal strength
at L In node is transferred. Moreover, the holding latency is
too short as to keep the signal less than a few ns. Considering
our experimental setup, tRC=tRP+tCL+tRP=28ns, the signal



Fig. 5. Circuit evaluation of the multi-activation latch between Pinatubo [4]
and MAPIM

holding time in [4] is too low to keep the signal during only
one cycle.

In contrast, MAPIM proposed a robust circuit design for
the multiple-addressed activation. This benefit derives from
the following novelties in our design: 1) the transfer gate
can deliver both high(1) and low(0) signals from the decoder
without the loss of strength. 2) the feedback inverter prevents
the node inside the latch from floating, which suppresses the
static power consumption. As seen in Fig. 5, MCRL holds the
activated signal for over 600ns. Although we show the data for
the range of 0∼600ns for easy illustration, our experimental
results show that MCRL retains the activated signal over a
few μs without losing signal strength. This allows MAPIM
to keep the signal long enough for the three-row activations
which is common in PIM operation. Furthermore, the signal at
the ‘L’ node is as strong as that at L In node in MCRL design,
thus ensuring robustness.

C. Performance Sensitivity to the Number of Bits

We compare the mat-parallelism in our design with two
state-of-the-art PIM designs, Pinatubo [4] and LUPIS [24],
which execute sequential operations in a MUX. Fig. 6 presents
the latency improvement of MAPIM for addition and multipli-
cation. The data shown in Fig. 6 is normalized to the latency
of Pinatubo, set to 1. The latency of addition is evaluated from
the design in Fig. 2 while considering the timing parameters
shown in Fig. 3. The latency of multiplication is estimated by
Eq. in [28],

tMUL ∝ [(M−1)+(N−2)] · tcarry+(N−1) · tsum+(N−1) · tand

where M and N are the multiplicand and multiplier, and
tcarry, tsum, and tand are the latencies for evaluating carry,
sum, and AND, respectively. Although the latency improve-
ment of MAPIM is around 4 times for 2-bit operations, the
improvement grows as the size of operands increases, with

Fig. 6. Latency improvement of MAPIM for arithmetic operations

36× improvement for 32-bit operations. Both [4] and [24]
use sequential mode in multi-bit operation, thus having much
higher latency. On the contrary, MAPIM buffered all required
addresses and activated them in a single request, so it takes
one tCL regardless of the number of bits, hence much better
performance as the number of bit increases.

D. Parallelism Efficiency in Applications
We evaluate the efficiency of MAPIM with four OpenCL ap-

plications. Fig. 7 shows the speedup and the energy efficiency
of proposed MAPIM and two state-of-the-art PIM designs,
Pinatubo [4] and LUPIS [24]. All results are normalized to
the value of unmodified AMD GPU. The results show that
the three PIM designs outperform the GPU-based computation
for the wide range of the memory size. It is because PIM
designs reduce the data movement costs. Among the PIM
designs, MAPIM achieves the best performance improvement
as compared to the other PIM techniques [4], [24]. For
example, the proposed design is 339× faster and 221× more
energy efficient as compared to the GPU, and 16× faster as
compared to the state-of-the-art PIM designs, Pinatubo [4] and
LUPIS [24]. This suggests that utilizing mat-level parallelism
is key to designing highly efficient PIM architectures.

E. Overhead
MAPIM adds a latch circuit and a routing block to each

mat array. The area overhead has been estimated by the
ratio of the additional latch and sharing routing area over
the corresponding cell area. We assume 32 BLs-per-LYSW
and 32 LYSWs-per-mat. The area estimates from Cadence p-
cell data with 45nm process technology, the overhead incurred
in MAPIM occupies an area of 1.5um2, which is a 0.57% area
overhead compared to a corresponding row of sub-array. This
is a very similar value to the work in [4] which has 0.49%
area overhead but works for better performance as shown
in Sec. IV-B. MAPIM also shows outstanding area efficiency
compared to the work in [21], a state-of-the-art latch design
for DRAM, showing an area of 42.9um2.

V. CONCLUSION

We present a high-performance PIM architecture which
enables mat-level parallel operations by enabling higher par-
allelism in its mat structures. The proposed design hugely
accelerates the PIM applications whose performance is not
restricted by the off-chip channel bandwidth. The experimental
results show that our design presents 16× and 339× per-
formance improvement compared to the state-of-the-art PIM
designs and the GPU architecture, respectively.
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Fig. 7. Speedup and energy efficiency of proposed MAPIM to other PIM architectures [4], [24] for different applications.
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